Geodesics, Curvature, and Divergence on Finite 2-Manifolds

Shreshth Rajan
December 16, 2025

Abstract

For finite triangulated surfaces, shortest paths carry important geometric information: on
spheres, they tend to cluster, while on a torus or projective plane they spread in a qualitatively
different way. The growth of small geodesic circles reflects how curvature influences distances in
smooth and polyhedral geometry. Here, we observe that curvature appears directly in a circle-length
expansion. When we look in the discrete setting, however, this information has to be recovered from
only combinatorial data. In this paper, we examine how this recovery works for finite 2-manifolds
in the sense of Knill’s discrete differential geometry. We look at several graph 2-manifolds - here
each curvature is encoded by a vertex degree and satisfies a discrete Gauss-Bonnet Identity. In
the polyhedral setting, curvature appears as angle defect and controls the exact linear growth of
geodesic circles. We use a flat hexagonal tiling as a reference, and discuss a deviation in the growth
of graph spheres that measures how far a local metric neighborhood moves from a flat case. At ra-
dius 1, this deviation coincides directly with the degree curvature. When summed over all vertices,
it gives an exact formula for the Euler characteristic. We compute this functional on standard
triangulations of a sphere, torus, and projective plane and find that this quantity tracks the local
focusing or spread of shortest paths while also being constrained by the general global topology. In
this sense, the growth of graph spheres is a discrete analog of geodesic deviation on finite surfaces.

1 Introduction

A recurring idea in differential geometry is that curvature is not a static invariant of a surface; rather,
it actively governs motion. On a smooth surface, the Jacobi equation for geodesic deviation makes
this precise: proximal geodesics focus or spread apart based on the sign of the Gaussian curvature.
Positive curvature makes geodesics converge, while negative curvature creates divergence. The Gauss-
Bonnet theorem makes this local behavior a global statement by relating total curvature to the Euler
Characteristic.

In physical geometry like general relativity, this idea exists in higher dimensions. Curvature ulti-
mately governs how families of geodesics focus or defocus. The less clear part of this, however, is how
much of this persists in purely discrete settings.

This paper addresses this by exploring the following question: what is the right discrete version of
geodesic behavior that reflects curvature on the finite 2—manifolds we explored?

We consider two closely related discrete models. The first is purely combinatorial: graph 2 -
manifolds, where geodesics are shortest paths in the graph metric and metric spheres are defined by
graph distance. The second is geometric: polyhedral (piecewise flat) surfaces, where curvature appears
as angle defect at vertices and geodesics are defined using the intrinsic metric.

In this vein, the polyhedral setting provides an interesting guide. Near a vertex p, a polyhedral
surface is locally isometric to a Euclidean cone with total angle

O(p) = 2m — K(p).
Here, a direct computation shows that a geodesic circle of radius r has length

L(p,r) =0O(p)r, L(p,r) — 2nr = —K(p) r.



Therefore, at a cone point, curvature controls geodesic behavior in an explicit way: positive curvature
shortens circles and causes geodesics to focus; negative curvature lengthens circles and spreads them
apart.

This observation suggests a discrete analogue. In a graph 2 - manifold, the flat reference model is
the hexagonal tiling, where the sphere of radius r contains exactly 6r vertices. For a general graph 2
- manifold G and vertex v, we therefore define a divergence functional by

Dg(v,r) =Sy (v)| — 67,
where S, (v) denotes the graph sphere of radius r. The first check is clear:
D¢g(v,1) = deg(v) — 6 = —6K¢(v).

Summing over all vertices yields

Z DG(Uv 1) = —6X(G),

This shows that the average divergence already encodes global topology. In this sense, the growth of
small metric spheres in the graph setting plays the same role that geodesic circles play in the smooth
and polyhedral theories.

The remainder of the paper develops this analogy systematically. Section 2 reviews graph 2 -
manifolds, degree curvature, and the discrete Gauss—Bonnet theorem. Section 3 studies polyhedral
surfaces, geodesics, and geodesic fans. Section 4 introduces circle growth and fan behavior in both
settings. Section 5 defines the discrete divergence functional and proves its basic properties. Section 6
computes the functional on standard triangulated examples. Section 7 interprets divergence as a
discrete analogue of geodesic deviation and discusses possible extensions.

2 Discrete 2—Manifolds and Curvature in the Graph Setting

In this section, we recall the discrete 2-manifold framework from Knill’s discrete differential geometry.
We discuss a combinatorial curvature that underlies the graph-theoretic Gauss-Bonnet theorem. The
goal here is twofold: (i) provide a precise definition of a finite 2-manifold in this framework and (ii)
justify the curvature formula

deg(v)

6
both by a geometric interpretation (ie. angle defect) and by a purely combinatorial Gauss-Bonnet
identity. This is the discrete analogue of the smooth relation between Gaussian curvature and geodesic
behavior. We later will use this as a baseline for comparing with a discrete geodesic divergence

Kw) = 1-

functional.

2.1 Graph 2—Manifolds

Let G = (V, E) be a finite simple graph. For a vertex v € V, the unit sphere (or link) of v is the
induced subgraph
S(w):=G{u eV : {u,v} € E}].

Following Knill [Knilll, [Kni25], we call G a graph 2—-manifold if each S(v) is a cycle graph C,, with
n > 3, and G admits a triangulation: there exists a collection F' of 3 - element subsets of V' such that
(V,E,F) is a closed 2 - dimensional simplicial complex where every face is a triangle and every edge
is contained in exactly two faces. The Euler characteristic of G is

X(G) = [V = |E[+F].



The cycle condition for S(v) encodes the local manifold requirement that a small neighborhood of
v has the topology of a 1-sphere. This class includes all closed triangulated surfaces: spheres, tori,
projective planes, and higher-genus surfaces.

2.2 Angle Defect and Curvature

When a graph 2-manifold is a polyhedral surface in R? with each face a Euclidean triangle, curvature
is concentrated at vertices.
If 0 € F is a face incident to v and 6,(v) is the interior angle of o at v, the angle sum at v is

O(v) = 0,(v),

and the angle-defect curvature (in class, we called this the excess angle [Kni25|) is
Kang(v) := 21 — O(v).

Flat Euclidean geometry would contribute a total angle of 2 around each point, so Kane(v) measures
the local excess or deficit in curvature.

The polyhedral Gauss-Bonnet theorem (e.g., [BS08] or the polyhedral curvature discussion from
class [Kni25]) states that for a closed polyhedral surface,

D Kang(v) = 27x(G).
veV

When all faces are equilateral triangles, each contributes an angle of w/3. A vertex of degree d then
satisfies

s s d
@(U):d§7 Kang(v):277—_d'3:27'r<1—6>.
This motivates the normalized degree curvature
deg(v
Kag(0) 1= 1~ 92,

which coincides with Kung(v)/(27) for equilateral triangulation.

Thus Kqeg(v) is the total curvature (in 27) from vertex v, and serves as a discrete Gaussian
curvature. This notion appears in several perspectives on discrete curvature, including Forman’s com-
binatorial Ricci curvature [For03] and Ollivier’s coarse Ricci curvature [Oll09a)], though in a different
analytic form.

2.3 Combinatorial Gauss—Bonnet

An interesting aspect of degree curvature is that it satisfies an exact Gauss-Bonnet identity purely
at the graph level. It requires neither an embedding nor metric data. The following proof from class
appears in several texts [Knilll [Kni25].

Theorem 2.1 (Discrete Gauss-Bonnet). Let (V,E,F) be a closed triangulated graph 2-manifold.

Then
5 (1-2E) = Wi B+ iF] = )

veV

Proof. Each edge contributes to the degrees of exactly two vertices. Therefore,

) " deg(v) = 2|E|.

veV



Thus

> (1 SED) vy - § X deate) = V1 - 121

veV veV

Each face has three edges. Each edge is contained in precisely two faces (ie. the surface has no
boundary), so 3|F| = 2|E| and hence |E| = 3|F|. Substituting,

1 1 3 1
—Z|E|=|V| == S|F|=|V| - =|F| = V| - |E| + |F| = .
VI=3lEBl=VI=3 - 5lIFI= V= SIFl = V] = |E| + |F] = x(G)

O

This combinatorial theorem is the discrete analogue of the smooth Gauss-Bonnet formula fa-
miliar from classical differential geometry (see, e.g., [dC76l [O’N97, [Spi99]). When the triangula-
tion is equilateral, it is also equivalent to the polyhedral Gauss-Bonnet theorem. This is because of
Kang(v) = 21 K geg (V).

2.4 Examples: Sphere, Torus, Projective Plane

Here, we note three standard triangulations for later reference.

Sphere (tetrahedron). Here |V| =4, |E| =6, |F| =4, so x = 2. Each vertex has degree 3, hence
K(w)=1/2and )  K(v)=2=x.

Torus. A studied minimal triangulation has |V| = 7, |E| = 21, |F| = 14, resulting in y = 0. Every
vertex has degree 6, so K(v) =0 for all v and ), K(v) =0 = x.

Projective plane. A classical triangulation has |V| = 6, |E| = 15, |F| = 10, giving x = 1. Every
vertex has degree 5, so K(v) =1/6, and >, K(v) =1= .

These examples show three canonical curvature regimes: strictly positive, identically zero, and
somewhat positive total curvature. Later in the paper, these serve as benchmark geometries when we
study geodesic spreading and the discrete divergence functional.

=5 deg(v) =6 deg(v) =7
Ka(v)=3%>0 Kqg(v) =0 (flat) Ka(v)=—£<0
Figure 1: Curvature regimes on graph 2-manifolds. Left: positive curvature (degree 5). Center: flat
(degree 6, hexagonal). Right: negative curvature (degree 7). The unit sphere S;(v) forms a cycle
around the central vertex.

3 Polyhedral Surfaces, Geodesics, and Geodesic Fans

In the last section, we worked in the combinatorial space of graph 2 manifolds and degree curvature.
Here, we move into the polyhedral world. Geodesics and geodesic ”fans” can be defined in the metric



sense, with curvature being an angle defect at vertices. The aim is to make more precise Knill’s
comment [Knilll [Kni25]: in regions of positive curvature, geodesic fans focus and small circles are
shorter than in the flat plane. In regions of negative curvature, fans spread and circles are longer. This
provides the geometric intuition that our later discrete divergence functional is designed to capture
combinatorially.

3.1 Polyhedral Surfaces and the Intrinsic Metric

Let (V,E,F) be a closed triangulated graph 2-manifold. A polyhedral realization (also called a geo-
metric realization) of this triangulation is a map ¢ : V — R3 s.t. for each face o = {v1,v2,v3} € F, the
points ¢(v1),t(v2), t(vs) are non-collinear and span a Euclidean triangle, and distinct faces intersect
only in common edges, common vertices, or not at all. The resulting set

M = U Ai(o)) CR?
oel

is a piecewise-flat polyhedral surface [BS0S].

The intrinsic distance dps(x,y) between points x,y € M is defined as the infimum of Euclidean
lengths of rectifiable curves on M joining x to y. Equipped with this length metric, (M, dys) is a
geodesic metric space: for sufficiently close points, there exist shortest paths realizing the distance
(see, e.g., [BSO]]).

A curve vy : I — M (with I C R an interval) is a geodesic if, locally, it is length minimizing: each
point of v has a neighborhood on which ~ realizes the intrinsic distance between its endpoints.

3.2 Geodesics on Triangle Meshes

The structure of geodesics on polyhedral surfaces is particularly simple away from vertices. Inside the
interior of a single face, the metric is just the restriction of the Euclidean metric on a triangle.

Lemma 3.1. Let 7 : [a,b] — M be a geodesic whose image on [a,b] lies in the interior of a single
triangular face. Then y([a,b]) is a straight line segment in that triangle.

Proof sketch. In the interior of a face, the induced metric is Euclidean. Any locally length-minimizing
curve in a Euclidean domain is a straight segment: if v were not straight, we could replace the
arc between v(a) and ~y(b) by the straight segment joining these endpoints inside the face, strictly
shortening its length, contradicting local minimality. O

When a geodesic crosses an edge between two adjacent faces, it remains straight after unfolding
the faces into the plane.

Lemma 3.2. Let v be a geodesic that crosses an edge e at a point p which is not a vertex. Suppose
e is shared by two faces o1 and o9. If we develop o1 and oo isometrically into the Euclidean plane by
reflecting one triangle across e, then the image of v in this unfolded configuration is a straight line
near p.

Proof sketch. Take a small neighborhood of p in 7 U gy. Unfold the two triangles along e into a
single quadrilateral. The unfolded metric is Euclidean, so a locally length-minimizing curve in this
patch must be a straight segment. Folding back identifies the two copies of e and shows that + crosses
the edge with no corner when viewed in a fully developed plane; if there were a corner, it could
be smoothed and the curve could be shortened, which contradicts minimality. This is the standard
unfolding argument for polyhedral geodesics [BSO§]. O

At any vertex, the metric is singular: curvature is concentrated. Geodesics can branch or have
non-unique continuations. We further explore geodesics from a vertex and the behavior of small circles
around it by modeling vertex neighborhoods as Euclidean cones.



3.3 Vertex Cones and Small Geodesic Circles

Let v € V be a vertex of the triangulation. Denote by o1,...,0; the faces incident to v, and let
0;(v) € (0,7) be the interior angle at v in the face o;. The total angle around v is

and the angle-defect curvature is Kang(v) = 27 — ©(v), as in Section 2.
The local geometry of M near v is modeled by a Euclidean cone. For a > 0, the Fuclidean cone
C, is obtained from the planar sector

Sa:{(r’¢):rzoa 0§<,0<O[}

with metric dr? 4 r2dy? by identifying the boundary rays ¢ = 0 and ¢ = a; see [BS08] for a standard
reference.

Proposition 3.3. For sufficiently small € > 0, the intrinsic metric on the star
Starg(v) := {x € M : dp(z,v) < €}

is isometric to a neighborhood of the tip in the Euclidean cone Cg,). In particular, the total angle
around v in the intrinsic metric is ©(v), and the curvature concentrated at v is Kang(v) = 2m — O(v).

Proof idea. Unfold the faces o1, ..., 0 around v into the plane by successively gluing along the edges
that meet at v, preserving edge lengths. The union of the unfolded triangles is a planar sector of
angle ©(v). Identifying the two boundary rays produces a cone of angle ©(v), and the induced metric
coincides with the intrinsic metric on a sufficiently small neighborhood of v in M [BSO0§]. O

In the cone C,, circles centered at the tip have circumference proportional to the cone angle.

Lemma 3.4. Let C, be the Euclidean cone of angle «. The geodesic circle of radius r > 0 centered
at the tip has intrinsic length Lo (1) = ar.

Proof. In the sector model S, the circle of radius r is parameterized by ¢ € [0, @) with line element
ds = rdy. Integrating gives L, (r) = foa rdy = ar, which descends to the cone after identifying the
boundary rays. O

Now, with a = O(v), we get:
Corollary 3.5. For sufficiently small r > 0, the intrinsic geodesic circle
Cr(v) :={zeM:dy(x,v)=r}

has length
L(v,7) =0(v)r = (2m — Kang(v)) 7.

Equivalently,
L(v,r) =211 = —Kang(v) 7.



vertex p

cone angle

O(p) \

Key relations: O(p) =27 — K(p), L(p,7)=0O(p)-r, L(p,r)—2nr=—-K(p)-r

Figure 2: Geodesic circle on a polyhedral cone. A neighborhood of a vertex with angle defect K (p) is
isometric to a Euclidean cone of angle O(p) = 2 — K(p). The geodesic circle at radius r has length
L(p,r) = ©(p)r, giving first-order deviation proportional to curvature.

3.4 Geodesic Fans and Curvature

We now formalize the “fan” picture. Fix a vertex v and consider geodesic rays emanating from v in
different directions.

Definition 3.6. A geodesic ray from v is a unit—speed geodesic v : [0,00) — M with (0) = v. In the
cone model Cg(,), such a ray corresponds to a straight ray from the tip with some initial direction

angle .

Definition 3.7. A geodesic fan of width Ay > 0 from v is a one-parameter family {7, }oe(p0,00+A¢]
of geodesic rays from v whose initial directions in the cone Cgy) fill the angular sector [¢o, o + Agp].

At radius r > 0, the points 7, (r) lie on the circle C(v) and form an arc of length
Ur) =rAp,

since the line element along C;(v) in the cone model is ds = rdy. For a fixed number N of equally
spaced rays filling out a full circle, the average spacing between neighboring rays at radius r is pro-
portional to
L(v,r)  O(v)r
N N
Compared to the flat case, where © = 27, we see:

o If Kang(v) > 0 (so ©(v) < 2m), then L(v,r) < 27r and geodesic fans are “compressed”: the
same number of rays occupy a shorter circle, and neighboring geodesics remain closer.

o If Kung(v) < 0 (so ©(v) > 2m), then L(v,7) > 27r and geodesic fans are “expanded”: rays
spread further apart than in the flat model.

This relationship between curvature and the size of small circles is the polyhedral analogue of
geodesic deviation in the smooth setting.. It is exactly the behavior our discrete divergence functional
will measure in the combinatorial world (compare, for instance, with the smooth treatment in [dC76,
O’'NO97, [Spi99)).



3.5 Smooth Puiseux Expansion and Discrete Analogue

On a smooth Riemannian surface, the length L(r) of the geodesic circle of radius r around a point p
with Gaussian curvature K (p) admits the classical small radius expansion

L(r) =2nr — K?()p) 3+ O(r°),

see, for example, [dC76l [O’'N97, [Spi99]. The leading term 277 is the Euclidean circumference, and
the sign of K (p) determines whether L(r) is shorter or longer than the flat value at order 73. Positive
curvature causes geodesics to focus, negative curvature makes them diverge.

4 Geodesic Fans and Local Divergence

In the previous section we described geodesics on polyhedral surfaces through their intrinsic metric
and the unfolding rule across edges [BS08]. We now examine how families of such geodesics (‘” geodesic
fans”) encode the local curvature of the surface. Here, we provide the geometric foundation for the
discrete divergence functional discussed later. Throughout, M is a polyhedral surface with its intrinsic
length metric, and p € M is a fixed vertex with angle defect K(p) = 2m — ©(p), per the cone model
for polyhedral vertices [BS08].

4.1 Geodesic rays and angular structure

By Proposition a sufficiently small intrinsic neighborhood of p is isometric to a Euclidean cone
Co(p) of total angle ©(p) [BSOS]. In this model, each geodesic ray from p corresponds to a straight ray
with polar coordinates (r, @), where ¢ € [0,0(p)) is an angular parameter intrinsic to the cone. Thus
the space of initial geodesic directions at p has total angular measure O(p) rather than 27. Positive
curvature (K (p) > 0) reduces the local angular space; negative curvature increases it.

Let v,(r) = (7, ¢) denote the geodesic ray of direction ¢. If A = |p1 — 2| is the angular separation
of two rays, the intrinsic distance between ~,, (r) and v, () is, by the Euclidean law of cosines applied
in the developed sector,

(A
d(%m (1), Yo (T)) = 2rsin <2) .
For small A we obtain the linear approximation

d(mpl (T)u Voo (7")) =rA + O(TA3)7

showing that geodesic rays separate linearly in r. The coefficient of this linear term is controlled
entirely by the cone angle ©(p).

4.2 Combinatorial analogy: spheres in graph 2-manifolds

The same phenomenon appears in Knill’s discrete 2-manifold graphs [Knilll, [Kni25]. For a vertex v
of a 2-manifold graph G, let S,(v) denote the sphere of graph-distance r. In a flat (degree-6) region
one has |S,(v)| = 6r. The graph curvature

 deg(v)
6

captures deviations from flatness [Knill]. At radius r =1,

Kgv) =1

51(v)| = deg(v) = 6 — 6Kc(v),

and for small  the shells S, (v) expand more slowly when deg(v) < 6 and more quickly when deg(v) >
6. Thus the sign of Kg(v) dictates the initial expansion behavior exactly as in the polyhedral case.



4.3 Compatibility of the polyhedral and graph models

The two pictures agree at the level of first-order expansion. At a polyhedral vertex with angle defect
K (p), the metric circle satisfies
L(p,r) — 2mr = —K(p) r.

At a vertex of a graph 2-manifold one has, to first order,
|Sy(v)| — 6r = —6Kg(v) + O(1),

in the flat-hexagonal normalization [Knilll [Kni25]. Here L(p,r) denotes the continuous length of a
geodesic circle on the polyhedral surface, while |S,(v)| denotes the discrete vertex count in the graph
sphere; these are parallel but distinct quantities. Identifying the flat reference lengths 27 and 67,
the two deviations match in sign and linear order. This agreement justifies treating geodesic fan
behavior and combinatorial sphere growth as parallel manifestations of curvature in finite 2-manifolds
and provides the theoretical foundation for the discrete divergence functional discussed in the next
section.

5 A Discrete Geodesic Divergence Functional

For polyhedral surfaces, sections showed that the geodesic circle centered at a vertex p satisfies
the linear law [BS0§]

L(p,r) =O©(p)r = (2 — K(p)) ,

so that the deviation
Dyi(p,7) := L(p,r) —27r = =K (p)r

encodes the sign and magnitude of curvature at p to first order. This extends the well-known smooth
expansion of geodesic circles [dC76l [O'N97, [Spi99).

Here, we discuss a combinatorial analogue of this “first-order circle deviation” for graph 2-manifolds.
This is intrinsic to the graph metric and behaves analogously to the polyhedral model when the cur-
vature is small or localized. The functional is both geometrically natural and computationally simple;
as in, it depends only on the sizes of discrete metric spheres.

5.1 Motivation from circles in the flat and conical metrics

In the polyhedral setting, the local model near a vertex is a Euclidean cone with cone angle ©(p)
[BSO8]. The circumference of a radius—r circle grows linearly with r, and the difference from the
Euclidean law 27r is exactly —K(p)r. As a result, curvature controls the first-order divergence or
convergence of geodesic fans.

For graph 2-manifolds, the natural flat reference is the hexagonal tiling H, where every vertex has
degree 6 and the sphere of radius r has

1SH ()| = 6r for all 7 > 1,

a standard fact in discrete differential geometry [Knilll, [Kni25]. This is the combinatorial analogue of
27r. Our aim is to measure how |S,(v)| deviates from 6r.

5.2 Definition of the divergence functional

Let G = (V, E) be a graph 2-manifold and let v € V. We write

Sp(v) i ={uweV:dg(u,v)=r}



for the graph sphere of radius r € N (integer distance). The discrete divergence functional is defined
by
De(v,r) := [Sp(v)| — 6r

for integer r > 1. Equivalently, a normalized version
Sk (v)]
67

captures the relative deviation from the flat law. We work primarily with D¢ (v, ) since it has cleaner
additive properties and aligns directly with the polyhedral formula L(p,r) — 27r.

—1

D (v,r) =

5.3 Basic properties and relation to curvature

Locality. Since S, (v) depends only on the ball B,(v), the functional Dg(v,r) is completely local.
As in, any changes to the graph outside B,(v) do not affect it. This is in parallel to the metric fact
that L(p,r) depends only on the geometry in the geodesic ball B,(p) [BS0S].

Flat calibration. Out to radius r, if G agrees with a patch of the hexagonal tiling, then |S,(v)| = 6r
and hence Dg(v,r) = 0. Thus D¢ vanishes exactly in the combinatorial flat case, as captured in Knill’s
curvature framework [Knili].

First-order behavior at » = 1. At radius 1 we have |Si(v)| = deg(v), so using Knill’s degree
curvature d
Ko()=1— efé(v)7

[Knill] we obtain the exact identity
D¢(v,1) = deg(v) — 6 = —6K¢(v).

As a result, the sign of Dg(v, 1) agrees with the sign of —Kg(v). This directly reproduces the metric
relation Dys(p,r) = —K(p) r when r = 1. In particular:

deg(v) < 6 <= Dg(v,1) <0, deg(v) > 6 <= Dg(v,1) > 0.

Behavior for r > 1. As the radii get larger, the value of Dg(v,7) depends on the combinatorics
of neighbors-of-neighbors and cannot be reduced to a closed formula. But, as long as curvature is
concentrated near v, or the degrees in B, (v) are biased above or below 6, the sign of D¢ (v, ) typically
matches the sign of —Kg(v). The deviation reflects the accumulated contribution of curvature in
the ball. Using explicit triangulations of the sphere, torus, and projective plane, section [6] shows this
behavior. [Kni25|.

5.4 Comparison with the polyhedral divergence functional
Previously, in the metric setting we defined
Dy(p,r) = L(p,r) — 2nr = —K(p) r
for a cone point p [BSO8|. The graph formula
Dg(v,r) =[Sy (v)| — 67

is the exact combinatorial analogue, with 6 playing the role of 27r. The identity Dg(v,1) = —6Kg(v)
is a discrete version of the metric relation %DM(p,rNr:O = —K(p), showing that the first-order
divergence of geodesic fans in the graph metric detects the same curvature that appears in the Gauss—
Bonnet theorem for graphs [Knill].
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6 Examples and Computations

Here, we compute the discrete divergence functional on several canonical triangulated surfaces and
compare its behavior with the underlying curvature distribution established by the degree curvature
Kg(v) =1 —deg(v)/6 and the Gauss—Bonnet identity [Knilll [Kni25]. The examples illustrate three
distinct regimes: globally positive curvature (spherical polyhedra), globally zero curvature (torus),
and mixed curvature with positive Euler characteristic (projective plane). Throughout, we write

Dg(v,r) =[S, (v)| — 6r, ﬁg(v,r) = -1,
and recall from Section [l that

D¢g(v,1) = deg(v) — 6 = —6Kg(v).

6.1 The tetrahedral sphere: uniformly positive curvature

The tetrahedron is the unique 3-regular triangulation of S%, with (V,E,F) = (4,6,4) and Euler
characteristic 2 [Kni25]. Each vertex satisfies deg(v) = 3, hence

KG(U):1—%:%, ZKG(U):zLé:z:X(s?).

The tetrahedral graph is the complete graph K, where every vertex is adjacent to every other vertex.
The graph metric spheres are:

S1(v) = three neighbors, |S1(v)| = 3,
and S3(v) = @ (the empty set), since the graph diameter is 1. Thus
De(v,1) =3 —6=—3.

Here, the negative sign reflects the focusing of geodesic fans predicted by positive curvature. Note
that for » > 2, the functional D¢g(v,7) is undefined for this graph, as all vertices are at distance at
most 1 from each other.

6.2 The octahedral sphere: milder positive curvature

The octahedron has (V, E, F') = (6,12,8) with deg(v) = 4 at every vertex [Kni25]:

4 1

Kol)=1-g=g L Kol=6-5=2=x(s")

A vertex v has four neighbors, hence
Dg(v,1) =4—6=—2.

At radius 2 the sphere Sy(v) consists of the vertex antipodal to v and its two adjacent vertices, giving
|S2(v)| = 3 and
Dg(v,2) =3—-12=-0.

Here, the divergence has a smaller magnitude at » = 1 but remains strongly negative in comparison
with the tetrahedron. This matches the fact that Ko = 1/3 < 1/2. Both examples corroborate the
linear first-order law D¢g(v,1) = —6K¢(v) derived from Knill’s curvature framework [Knill].
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Si(v)

U1 U2

Complete graph Ky: every vertex adjacent to all others
Diameter = 1, [Si(v)| =3, [S2(v)| =2
Dg(v,1) =3—-6=—-3 (negative = focusing)

Figure 3: The tetrahedral graph K4 (complete graph on 4 vertices). Each vertex has degree 3, giving
positive curvature K¢ (v) = 1/2. Since diameter is 1, all vertices lie in S;(v) and Sa(v) is empty.

6.3 A local hyperbolic patch: negative curvature
To illustrate negative curvature, consider a vertex v in a triangulated surface for which deg(v) = 7.
Then . |

The positive value indicates that the first metric sphere grows faster than in the flat reference model.
If the neighbors of v have degrees close to 6, so that curvature is concentrated near v, the second
sphere typically satisfies |S2(v)| ~ 6 -2 + 1, giving

Dg(v,2) ~ 13 -12=1> 0.

This mirrors the polyhedral situation, in which a vertex of negative angle defect produces L(p, r) > 27,
reflecting the divergence of nearby geodesics [BSO0§].

6.4 Triangulated tori: curvature cancellation and near-zero divergence

Every triangulated torus 7?2 satisfies x(72) = 0 and thus

> Ka(v)=0

veV(T?)

[Knill]. Minimal triangulations (e.g. the 7-vertex triangulation) have every vertex of degree 6, so the
surface is combinatorially flat:

Kg(v) =0, |Syr(v)| = 6r for all small r,
in agreement with Knill’s examples of flat discrete manifolds [Kni25]. Hence

Dg(v,r) =0 (flat case).
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Extending this, a torus may contain a mixture of positive and negative curvature vertices (e.g.
degrees 5 and 7), but the sum must vanish. When curvature is spread evenly, the sphere sizes typically
satisfy

|Sy(v)| = 6r + O(1),

so that Dg(v,r) remains close to zero. Empirically and in all explicit triangulations we tested, the
sign of D¢(v, 1) matches the sign of K¢g(v), while Dg(v,r) for r > 2 fluctuates around 0, consistent
with global flatness.

6.5 Triangulated projective planes: net positive curvature

For RP? we have x(RP2) = 1, so any triangulation must satisfy
> Kav) =1
v

[Knilll [Kni25]. This forces a global excess of positive curvature, though local patches may have
negative curvature. In a typical small triangulation, one observes:

1

deg(v) =5 at many vertices, Kg(v) = 6> 0, Dg(v,1) = —1,
and at certain vertices
1
deg(v) = 77 KG(U) = _67 DG(”? 1) =1

For example, in a common 6-vertex model of RP?, a vertex v with deg(v) = 5 satisfies immediately
Dg(v,1) =5—-6=—1,
demonstrating local geodesic convergence. A vertex u with degree 7 exhibits
D¢g(u,1) =1> 0,

showing local geodesic divergence. However, because positive curvature outweighs the negative con-
tributions globally, one finds that for many vertices the second sphere satisfies

|52(U)| < 12, Dg(U,Q) < O,

even when v itself has degree 7. This shows that neighboring positive curvature has an impact on the
growth of metric spheres, matching the behavior of polyhedral geodesic circles near a vertex of small
negative defect when situated on a globally positively curved surface.

6.6 Summary

Through all these examples, we found the divergence functional detects curvature in the same way
that we predicted from the degree curvature Kg(v) and the cone formula for polyhedral surfaces
[Knilll BSO8|. Positive curvature (degrees < 6) produces Dg(v,r) < 0; negative curvature (degrees
> 6) produces Dg(v,r) > 0; and in global Euler-characteristic-zero geometries such as the torus,
cancellation of curvature forces D¢ (v, 1) to remain close to 0. This parallelism between discrete sphere
growth and curvature shows that Dg(v,r) is a combinatorial analogue of the polyhedral first-order
deviation L(p,r) — 2nr = —K(p) r [BS0§].
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7 Discussion and Interpretation

In both the polyhedral and graph settings, we showed parallel theories of curvature and geodesic
divergence on finite 2-manifolds. Here, we conclude by illuminating the central principles these models
showed and explore the divergence functional in a broader geometric context.

7.1 Curvature as the determinant of geodesic fan behavior

In smooth differential geometry, the geodesic deviation (Jacobi) equation [dC92|] links the relative
acceleration of nearby geodesics to Gaussian curvature. The classical expansion

L(r) =27r — K?()p)r?’ + O(r°),

states that small geodesic circles shrink or expand relative to the Euclidean model in proportion to
the curvature at p.

Curvature is concentrated at the vertices in a polyhedral setting. Here, the circle-length law
becomes linear [BSO8|:

L(p,r) = (2m — K(p))r,  Dum(p,r) = L(p,7) — 27 = —K(p) 7.

Therefore, the sign of curvature determines whether geodesic fans converge or diverge.
In the discrete world, the graph divergence functional still captures this phenomenon. Since

De(v,1) = |S1(0)] — 6 = deg(v) — 6 = —6Kc(v),

curvature dictates first-order deviation from the flat model [Knilll [Kni25]. Negative divergence is
geodesic convergence (deg(v) < 6). Positive divergence is geodesic spreading (deg(v) > 6). The
alignment of Djy; and D¢ at first order reflects the shared conical geometry displaying local geodesic
behavior in both settings [BS08, Knill].

7.2 Local divergence and global topology
Because Gauss—Bonnet asserts [Knilll [Kni25]
Y Kal) =x(G), D K(p)=2mx(M),
v p

summing the first-order identity Dg(v,1) = —6Kg(v) over all vertices yields
> Do(v,1) = —6x(G).

Thus the average divergence of a unit geodesic fan has the Euler characteristic: on a sphere or
projective plane (x > 0) the average is negative; on a torus (x = 0) it vanishes; on higher-genus
surfaces (x < 0) it is positive.

This parallels the metric fact that the average positive curvature shortens the circle and negative
curvature lengthens them [BS08]. Based on the discrete identity, even combinatorial structures encode
this global geometric constraint.
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7.3 Relation to other discrete curvature frameworks

The aforementioned divergence functional is not a different curvature definition. Rather, it’s a geomet-
ric observable derived only from metric sphere growth. It is qualitatively different from Ollivier—Ricci
curvature [OII09b], which measures contraction of optimal-transport couplings, and from Forman cur-
vature, which arises from a Bochner-type combinatorial Laplacian. On the other hand, Dg(v,r) is
based on the flat growth law |S,| = 6r. It is directly related to the degree curvature Kqg(v) and
Gauss-Bonnet [Knill].

Altogether, this makes D¢ (v, r) significant for interpreting geodesic behavior, since it measures the
quantity controlled by geodesic deviation in the smooth theory: the rate at which nearby geodesics
separate as one moves outward from a point.

7.4 Discrete “worlds” and geodesic stability

Every finite 2 - manifold we have discussed can be viewed as a discrete geometric world in which free
motion follows graph or polyhedral geodesics. Curvature is then the governing principle: it determines
whether trajectories remain close (positive curvature), evolve with neutral stability (zero curvature),
or separate rapidly (negative curvature).

We have shown how this mirrors the role of curvature in smooth geometry. It is analogous to the
role of curvature in general relativity, where the Riemann tensor dictates the focusing or defocusing
of geodesics [dC92].

This perspective is intuitive: discrete curvature furnishes a local stability descriptor for geodesic
flow on finite surfaces, and indicates how predictable or divergent the evolution of neighboring states
is within a given discrete geometric environment.

7.5 Possible extensions

Several natural directions arise from this framework. One may study the behavior of Dg(v,r) as
r — o0 on large triangulations, relating asymptotic sphere growth to global curvature distributions
[Knill].

Another direction is refinement limits: as a sequence of triangulations approximates a smooth
surface, the discrete growth laws for |S,(v)| should converge to the smooth circle-length expansion
[BS08, [dC92].

Lastly, since ball growth influences heat-kernel and random-walk behavior, one may seek con-
nections between the divergence functional and probabilistic curvature notions such as Ollivier—Ricci
curvature [OII09b].

Such questions lie beyond the present study but highlight the geometric richness of discrete fan
divergence.
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